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ABSTRACT
In Sub-Saharan Africa, electricity access is progressing, but electric-
ity use for economic growth remains stagnant. Powering economies
sustainably is vital to enhancing livelihoods and is particularly chal-
lenging in agriculture-led rural economies. The financial viability
of electrification hinges on identifying potential sources of demand
to ensure sustainable revenues for utilities, which in turn provides
economic benefits to consumers.

This paper presents a technique for identifying areas with diesel-
powered irrigation activity in Ethiopia based on remotely sensed
data. We develop and evaluate a supervised classification model
based on data collected in the Western Ethiopia Highlands on ir-
rigation practices. We find that a feature-based multivariate time
series classification approach combined with a 𝑘-Nearest Neighbors
model accurately predicts about 75% of areas with diesel-powered
irrigation activity. Our results suggest that our technique could be
valuable in identifying areas in Ethiopia with potential anchor loads
for electricity grid extension by replacing existing diesel pumps for
irrigation with electric pumps. Guidance on financially-viable areas
to expand electricity networks, especially those with economically-
vibrant activities like irrigation, is crucial for enabling electricity
service providers to recover costs and expand access to more com-
munities more quickly.

CCS CONCEPTS
• General and reference → Empirical studies; • Computing
methodologies → Supervised learning by classification.
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1 INTRODUCTION
Over the past decade, the rate of electrification in sub-Saharan
Africa has steadily increased. The proportion of people with access
to electricity grew from 33% in 2010 to about 47% in 2019, outpacing
population growth. Sub-Saharan Africa remains the region with the
most significant electrification deficit despite this marked improve-
ment. Ethiopia is one of the three largest deficit countries globally,
accounting for 58 million people without access to electricity [32].
In response, the Government of Ethiopia, with support from the
World Bank, launched the National Electrification Plan (NEP) in
2017. It includes a comprehensive plan to reach 100% electricity
access by 2025, 65% of the population through the grid, and the rest
through off-grid solutions [45].

To realize the full impacts of electrification, increasing access to
electricity connections must be accompanied by affordable, reliable,
and sustainable electricity consumption and financially sustainable
power systems [19, 57]. The unfortunate reality is that in most
countries in sub-Saharan Africa, increasing electricity access rates
have not been accompanied by the same level of consumption
growth [22]. Consequently, people often still rely on traditional
fuels, especially for cooking, and utilities and mini-grid companies
are struggling for financial viability. A 2016 study of utilities in the
region found that only two sub-Saharan African countries have
financially viable electricity utilities [37].

Electrification planning must address electricity demand con-
straints at every stage, not least the planning stage, to ensure that
electrification stimulates economic growth. This concept of de-
mand stimulation during electrification planning has historical
precedence: Vietnam, an electrification success story, prioritized
the electrification of areas with high potential for growth in pro-
ductive uses of electricity, especially irrigation of the agricultural
regions. In turn, government revenue and household incomes in-
creased, leading to higher consumption and thus promoting the
overall financial viability of rural electrification [24].

Demand stimulation has become an integral part of electrifica-
tion planning in sub-Saharan African countries, including Ethiopia
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[45]. Ethiopia’s NEP specifically prioritizes grid access to areas
with the highest potential for irrigation and agricultural processing,
considering the particular importance of agriculture for rural liveli-
hoods [45]. From a utility’s standpoint, the financial viability of
rural electrification rests on its ability to generate sufficient revenue
from the sale of electricity that outweighs the cost incurred by grid
extension. Therefore, extending the grid to places with adequate
demand from anchor customers, who offer utilities a consistent
and substantial source of revenue to supplement the low demand
from rural customers, is crucial. In turn, cost recovery for the utility
means that they can set cost-reflective tariffs for rural electricity
consumers at an affordable rate. Existing capital budgets can also
stretch to provide access to more communities. Instead, if utilities
spend capital extending the grid to communities where consump-
tion remains low, their finances suffer, and as-yet-unconnected
communities wait longer for electricity connections.

How can communities with significant potential electricity con-
sumption be identified? Several previous studies that have ad-
dressed electrification planning have utilized Geospatial Electrifica-
tion Models (GEMs) with a strong supply-side focus. They evaluate
the most appropriate and cost-effective technologies for providing
universal access while relying on assumptions regarding future elec-
tricity demand based on population growth and GDP [36, 38, 43].
Very few studies consider productive use activities to assess po-
tential electricity demand for informing electrification planning
and policy. A noteworthy study developed a tool for identifying
potential electricity demand hotspots at a high spatial resolution in
Kenya, including irrigation load, by combining techno-economic
modeling and literature estimates [20]. Another previous effort to
develop scalable tools for mapping areas with high potential for
electric irrigation pumps in sub-Saharan Africa primarily focused
on mapping potential for off-grid solar irrigation pumps through a
multi-decision criteria model. Both studies consider groundwater
levels, aquifer productivity, crop and land suitability, and popula-
tion [53]. However, neither distinguishes the current non-electric
energy consumption for irrigation.

Currently, about 2% of agricultural land in Ethiopia is irrigated,
with smallholder farmers primarily relying on diesel-powered mo-
torized pumps and manually operated pumps for irrigation. An
estimated 200,000 diesel-powered motorized irrigation pumps were
in use nationally in 2019 [28]. Reliance on these fuels is unsus-
tainable in that it is expensive and detrimental to human health
and the environment. Their combustion releases pollutants into
the atmosphere, mainly nitrogen oxides (𝑁𝑂𝑥 ), carbon monoxide
(CO), and particulate matter (PM) [21]. Therefore, moving from
diesel-powered to electric pumps can increase the development
impact of electrification.

This paper proposes a novel approach to identify areas with
existing diesel-powered irrigation in Ethiopia by combining ground
data from an agricultural survey with satellite-measured pollution,
crop cover, elevation, and surface water data. We apply a supervised
machine learning time-series classification technique that leverages
the coincidence between irrigation seasons and seasonal variability
of pollution and crop cover datasets. The goal of our study is thus
to develop a model that can later detect fossil fuel-powered irri-
gation activity in Ethiopia based on publicly-available data alone.
These areas can then be targeted for electrification and serve as a

first productive use load for the grid, improving environmental and
financial sustainability for farmers and the utility, enabling acceler-
ation of rural electrification. Publicly-available satellite-measured
pollution data is becoming a reliable measure of surface-level pol-
lution where real-time air pollution monitoring on the ground is
scarce [31, 35, 72]. Using remote sensing data enables the devel-
opment of transferable and scalable models like ours to estimate
ground-level pollution.

Our specific research approach involves three steps: (1) We con-
duct on-the-ground surveys to collect the first-of-its-kind compre-
hensive dataset on the locations and measurements of cultivated
plots in two regions of Ethiopia with high irrigation levels. In ad-
dition, we collect their crop cultivation and irrigation practices,
including the source and method of obtaining water for irrigated
plots. (2) We assess two approaches that classify cultivated areas
into three classes: not irrigated, irrigated using diesel pumps, and
irrigated with other non-diesel-based methods. The first approach
directly classifies all observations into the three classes. The second
approach is a two-step binary classification, first detecting irriga-
tion activity and then classifying irrigated areas into two classes:
areas irrigated using diesel pumps and those irrigated with other
methods. (3) We evaluate the performance of four supervised clas-
sification algorithms and compare the efficacy of our classification
approaches. In doing so, we discuss the limitations of this analysis.

We begin with a brief literature review in Section 2. Then, we
present and evaluate our approach in Section 3 and Section 4. Fi-
nally, we highlight applicability issues, essential caveats, and future
directions for the work in Section 5 before concluding.

2 RELATEDWORK
There have been several previous efforts to detect irrigation signals
based on time-series optical or radar satellite imagery. Some of
these studies have used supervised decision tree, random forest,
and support vector machine (SVM) based classification approaches
[23, 46, 60]. In contrast, others have used unsupervised decision
tree-based classification [4], achieving a good overall performance
of over 80% accuracy. Other studies have achieved comparable accu-
racy with a 𝑘-means clustering algorithm [15, 16] and a deep learn-
ing approach of a convolution neural network (CNN) architecture
[3]. These studies, however, apply these models to irrigation-related
indices such as the Normalized Difference Vegetation Index (NDVI)
to generate large-scale irrigation maps without distinguishing the
type of irrigation method.

A notable study achieved high precision using a U-Net archi-
tecture deep learning approach to identify center-pivot irrigation
systems [51]. However, these irrigation systems form large circular
patterns that can be easily seen from satellite images. However,
we cannot apply this method to irrigation systems that are not
distinctly identifiable in satellite imagery.

Numerous studies have used satellite pollution measurements
to identify spatial and temporal changes and patterns in surface
emissions [27, 40, 42]. However, most of these studies have identi-
fied emissions patterns at a country-level scale or over large areas
and have not distinguished individual or highly localized sources
of emissions. Studies that have used satellite-measured pollution
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data to detect individual sources of surface emissions have primar-
ily focused on fossil fuel power plants, oil tanks, and ships. They
expressly apply Gaussian plume air pollution models to 𝐶𝑂2 or
𝑁𝑂2 data to detect and quantify emissions from individual fossil
fuel plants [7, 44, 52] and ships [26]. These models have only been
applied to sources with visible smoke plumes and, to our knowl-
edge, have not been applied to smaller sources of emissions, like
diesel-powered pumps. In addition, this technique faces the chal-
lenge of distinguishing between multiple sources of emissions that
are in proximity due to the effect of winds. To overcome this chal-
lenge, some studies have applied CNN deep learning techniques,
combined with SVM-based classification to satellite imagery to
detect fossil fuel power plants [68, 70], oil tanks [65, 71], and ships
[69], achieving between 80% and 95% accuracy. These techniques,
however, can only be applied to emissions sources that are distin-
guishable from their surrounding environment in satellite imagery,
e.g., through the cooling towers of power plants. Some studies
have leveraged the seasonal variability in time series tropospheric
pollution measurements to identify the respective source of emis-
sions. These studies, for example, match seasonal 𝑁𝑂2 patterns
to harvesting seasons to identify biomass burning, especially in
Africa and Southeast Asia [1, 33, 66]. However, no studies to our
knowledge have explored matching seasonal pollution patterns to
irrigation seasons to detect fossil fuel-powered irrigation pumps.
A recent study applied an ensemble supervised machine learning
classification technique, combining XGBoost learners, random for-
est, LASSO, and ridge regression models to remotely sensed rainfall
and surface water data to identify functioning and non-functioning
groundwater pumps [58]. The model leverages the relationship
between surface water availability and groundwater pump use, cor-
rectly identifying pumps in use with about 80% accuracy. However,
this study does not leverage the temporal patterns of the rainfall
data and treats each time unit as a distinct feature. In addition, it
does not distinguish the type of pumps or the activity for which the
pump is used, so pumps commonly used for drinking water supply
cannot be considered separately, for example.

This paper proposes a modified Multivariate Time Series Classifi-
cation (MTSC) approach. We leverage the Spatio-temporal patterns
from multiple time-series pollution and vegetation index variables
and integrate some time-constant features. Some previous studies
that have applied MTSC tasks have used Long Short Term Memory
(LSTM) and recurrent neural network deep learning models [34, 64].
However, deep learning approaches require large training datasets,
which is a limitation in our study. Combining distance-based meth-
ods such as dynamic time warping (DTW) with a 𝑘-nearest neigh-
bors (𝑘-NN) classification algorithm has been used successfully to
classify multivariate time series [55]. However, we cannot apply
these distance-based methods to a disparate dataset of time-series
and time-constant features.

Another common alternative to distance-basedmethods is feature-
based classification approaches, which extract features from the
time series data. Then, standard classifiers such as SVM, 𝑘-NN, and
Random Forest are applied to the extracted features [39, 49, 67]. We,
therefore, employ a feature-based multivariate time series classifica-
tion approach using standard classifiers that have proven successful
in MTSC approaches and that are appropriate for our dataset based

Figure 1: Overview of study methodology

on domain knowledge. This approach allows us to utilize a hetero-
geneous set of time-series and time-constant features.

3 METHODOLOGY
This section introduces our approach for detecting areas irrigated
with diesel-powered water pumps, summarized in Figure 1. We
begin by describing the study area, followed by a description of
the ground reference primary data and features selected according
to insights into the characteristics of diesel-powered pumps and
irrigated land. Next, we choose supervised binary classification
models based on the characteristics of our datasets and, finally,
describe our classification approach.

3.1 Ground Truth Data
Our study area consists of two regions in Ethiopia, the area East
of Lake Tana in the Amhara region and the central parts of the
Oromia region, each covering around 3,000 𝑘𝑚2 (Figure 2). Ethiopia
is located in the North-Eastern part of the African continent be-
tween 3°N and 15°N latitude and 33°E and 48°E longitude. Amhara
and Oromia regions have the largest area of irrigated agriculture in
Ethiopia, comprising over 70% of the existing irrigation schemes in
the country [17]. In consultation with the Ministry of Agriculture,
we selected six districts in Amhara and six districts in Oromia for
data collection. We then divided satellite imagery over the study
districts into square pixels of 5 km resolution, of which we selected
36 square pixels as study sites, 18 in each region. For the sample
to capture the local variety in irrigation intensity, we based the
study site selection on a stratified random sampling approach. The
five strata referred to different levels of signal strength determined
through an analysis of satellite imagery.

For our analysis, we use irrigation data collected in the study
area during April and May 2021 using two primary data collection
methods. First, at each of the 36 sites, we conducted an extensive
farmer survey in the community lying closest to the center of the
square pixel selected as the study site. We interviewed a random
sample of about 1,000 farmers and elicited information on their
socioeconomic and demographic status, crop cultivation, and irri-
gation practices (household survey component). If accessible, the
farmers’ locations and measurements of cultivated plots (four GPS
coordinates on the boundary and one at the center of the plot)
were also captured, together with the status of irrigation and crop
cultivation on the plots at the time of data collection (plot mea-
surement component). The second team of enumerators visited 140
randomly-sampled pixels of 250 𝑚 resolution at each study site.
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Figure 2: Location of cultivated plots in (a) East of Lake Tana
in Amhara region and (b) East of Lake Ziway in central Oro-
mia region, Ethiopia.

Table 1: Number and total area of irrigated plots by the
method of irrigation

Irrigation status/method Number Area (𝑘𝑚2)

Irrigated, diesel water pump 561 2.69
Irrigated, mechanical water pump 31 0.09
Irrigated, gravity 326 2.07
Irrigated, hand held method 28 0.07
Not irrigated 4162 20.63

They measured the plot at the center of each pixel and up to two ad-
ditional plots if multiple plots were present within a pixel. They also
observed the plot features independently. For the sample to capture
the local variety in irrigation intensity, we over-sampled in irrigated
areas to provide more positive observations for algorithm training.
Therefore, the distribution of our ground truth dataset does not
mirror the underlying distribution of irrigation in the regions of
study. About 6,100 plots were measured, among which 570 plots
were measured as part of the farmer survey exercise. We collected
information on the method used to obtain water for irrigation for
about 1,100 plots irrigated during data collection. The remaining
5,000 plots were labeled as non-irrigated. We cleaned the dataset by
removing the plot instances with invalid geometries or intersecting
with other plot polygons. The number and area coverage of the
resulting plots by the status and method of irrigation is shown in
Table 1.

We also collected the coordinates of about 260 irrigation wells
and the respective plots to which they supply water. Based on these
data, we determined that the average distance of the irrigation
wells from the plots is about 35 m. To account for the placement
of the motorized pumps at the irrigation wells, we include a 35 m

Table 2: Number of 250 × 250𝑚2 pixels per class

Class Number of pixels

Diesel irrigated 558
Non-diesel irrigated 358
Non-irrigated 4763

buffer around the plots. The spatial distribution of the plots based
on labels in the study regions is shown in Figure 2.

We define a 250𝑚 resolution grid cell covering both of the study
areas selected to align with the sampling pixel resolution. Then,
we label and select pixels such that the pixels with a specific class
label only contain plots with the same class label. We specify three
classes: diesel irrigated, non-diesel irrigated, and non-irrigated (Ta-
ble 2). The resolution of the pixels is selected such that the spatial
resolution of the satellite-measured pollution data is improved with-
out compromising the consistency of the satellite measurements
with in situ surface measurements, as well as our ability to detect
spatial heterogeneity in the pollution measurements [9, 29].

3.2 Defining Features
We identify and select features of the pixels based on knowledge of
the characteristics of cultivated land, factors that would influence
the choice of irrigationmethod, and the attributes of diesel-powered
water pumps.

3.2.1 Time series pollution data. We use time-series satellite mea-
sured pollution data as one of the main input features of our model.
We hypothesize that for primarily agricultural areas, there is statis-
tically significantly higher pollution in areas with plots irrigated via
diesel-powered pumps than in regions with plots irrigated via other
methods during the irrigation seasons. In Ethiopia, these seasons
are the so-called Belg and Meher seasons, which we determined to
fall between September to March based on our survey data (Figure
3).

The Tropospheric Monitoring Instrument (TROPOMI), which
was launched on October 13, 2017, aboard the European Space
Agency’s Sentinel-5 Precursor, measures ultraviolet (UV), ultraviolet-
visible (UV–VIS), ultraviolet near-infrared (NIR), and shortwave
infrared (SWIR) spectral bands. From these bands, a wide range of
pollutant gases, including nitrogen dioxide (𝑁𝑂2), carbon monox-
ide (𝐶𝑂), sulfur dioxide (𝑆𝑂2), ozone, and formaldehyde, can be
retrieved at a spatial resolution of 7 by 3.5 𝑘𝑚2 (reduced to 3.5
× 5.6 𝑘𝑚2 on August 6, 2019) at nadir at a swath width of 2600
km, and daily overpasses at approximately 13:30 local solar time
at the equator. We downloaded TROPOMI level-2 𝑁𝑂2 and 𝐶𝑂

tropospheric vertical column density measurements from the ESA
Copernicus Open Access Hub over the Amhara and Oromia regions
of Ethiopia for the period of January 2018 to July 2021. A tropo-
spheric vertical column density is the vertically integrated number
of 𝑁𝑂2 (or 𝐶𝑂) molecules per unit area between the surface and
the tropopause in units of𝑚𝑜𝑙𝑒𝑐./𝑐𝑚2. We filtered the data to re-
move cloud-covered scenes, errors, and problematic retrievals (i.e.,
measurements with a quality assurance value of less than 0.75).
Since the angle of polar-orbiting satellites on a given area is slightly
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Figure 3: Patterns of average tropospheric𝐶𝑂 measurements
for diesel irrigated and non-diesel irrigated pixels

different for each overpass, we first accumulate daily observations
from consecutive overpasses over each month in each study region
to improve spatial sampling. We then arrive at average monthly
𝑁𝑂2 and 𝐶𝑂 values in each pixel using inverse distance weighted
(IDW) interpolation, which predicts the value at an unmeasured
location using a 𝑘 number of measured values surrounding the pre-
diction location. The measured values are weighted proportionally
to the inverse of the distance between the measured data point and
the prediction location [47, 63].

Previous studies [6, 31, 61, 72] have shown that TROPOMI satel-
lite measurements are a good estimate of in situ surface concentra-
tions of both𝑁𝑂2 and𝐶𝑂 inmost parts of the world. However, none
of these have performed ground-based validation in sub-Saharan
Africa, likely due to the scarcity of ground-deployed air quality
sensors. We obtained data for August 2020 from the 𝑁𝑂𝑥 sensor on
a Real-time Affordable Multi-Pollutant (RAMP) monitor recently
deployed in Accra, Ghana, [2] to validate the correlation between
surface 𝑁𝑂2 concentrations and tropospheric 𝑁𝑂2 measurements.
The RAMP was developed in a collaboration between Carnegie
Mellon University and SenSevere. It incorporates Alphasense elec-
trochemical sensors to measure 𝐶𝑂 , 𝑁𝑂2, 𝑆𝑂2 and 𝑂3, and a non-
dispersive infrared (NDIR) sensor to measure 𝐶𝑂2 [73]. We find
that the TROPOMI 𝑁𝑂2 measurements of the 7 by 3.5 𝑘𝑚2 pixel
that encompasses the 𝑁𝑂𝑥 sensor in Accra have both temporal
agreement and a strong correlation (0.71) to measurements taken
by the 𝑁𝑂𝑥 sensor (Figure 4), providing some confidence in the
ability of this satellite to reflect air quality dynamics at ground
level.

3.2.2 Time series vegetation indices. To capture the crop cover
dynamics of these cultivated pixels, we obtained remotely sensed
vegetation data: the Normalized Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI) measurements. These indices
quantify vegetation greenness from measurements of light inten-
sity coming off the Earth’s surface in visible and near-infrared
wavelengths. EVI improves upon the quality of the NDVI by cor-
recting for some atmospheric conditions and canopy background
noise and is more sensitive in areas with dense vegetation. These
data products are collected by the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard NASA’s Terra spacecraft at a
16-day temporal resolution and a 250-meter spatial resolution. We

Figure 4: Correlation between tropospheric𝑁𝑂2 columnmea-
surements and ground 𝑁𝑂2 concentrations in Accra, Ghana

extracted monthly averaged data from Google Earth Engine over
the study regions for the same period as the pollution data (January
2018 to July 2021). We re-sampled the data to the 1 𝑘𝑚2 grid cells.

3.2.3 Time constant features.

Elevation: The choice of which method of irrigation to use is
heavily influenced by topography. We hypothesize that areas irri-
gated with methods of irrigation that rely on gravity and slope will
be at higher elevations than those irrigated with diesel-powered
pumps (Figure 5a). We, therefore, use digital elevation data for our
analysis, obtained from the NASA Shuttle Radar Topography Mis-
sion (SRTM) dataset at a 30 m spatial resolution. The SRTM was a
primary component of the payload on the Space Shuttle Endeav-
our, which launched on February 11, 2000 [59]. We averaged the
elevation in meters for each 1 𝑘𝑚2 pixel.
Water availability: Availability of water sources for irrigation
impacts the type of irrigation method used by farmers. We, there-
fore, hypothesize that areas irrigated with diesel pumps will likely
be closer to large surface water bodies such as lakes and rivers than
those irrigated with other methods, especially non-mechanized
methods (Figure 5b). Therefore, using geospatial data on water
bodies in Ethiopia from the RCMRD GeoPortal [25], we define the
distance of each pixel centroid to the nearest primary water source,
that is, a lake or main river, as a feature to capture water availability.
Settlement patterns: Lastly, we consider settlement patterns as
a possible feature characterizing the method of irrigation. We use
data on population densities and proximity to road infrastructure
to capture the variation in settlement patterns. We hypothesize
that cultivated plots with non-motorized and non-mechanized ir-
rigation methods that rely on human operation will likely have a
higher population and be closer to roads than plots irrigated with
diesel-powered pumps (Figures 5c and d). We use one arc-second
(approximately 30𝑚) resolution population estimate of Ethiopia
obtained from satellite imagery as part of the High-Resolution Set-
tlement Layer (HRSL) population density dataset [18]. We sum the
population values for each pixel and define the distance of each
pixel centroid to the nearest major road.
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Figure 5: Empirical cumulative distribution functions of time
constant features for pixels irrigated with andwithout diesel.

3.3 Time series feature extraction and selection
A common approach to time series classification is to treat each
time point as a separate feature and directly apply a standard clas-
sifier. However, this approach is problematic because the classifier
ignores information contained in the time order of the data. In our
case, the classifier will ignore the seasonality of irrigation cycles
in the pollution and crop cover features. To ensure that we cap-
ture all the information contained in the time series, we extract
features that capture the overall properties of the time series and
the correlation between the different measurements in the time
series [12]. The algorithm calculates over 200 features for each
time series, including the minimum, maximum, mean, median, 25th
percentile, 75th percentile, standard deviation (stdev), the linear
regression 𝑦 = 𝑎𝑥 + 𝑏 coefficients a and b, and the area under the
curve (AUC). A comprehensive list of the features is listed in [11].
The algorithm implements an additional step of feature significance
testing and feature selection to avoid increased model and compu-
tation complexity and poor model accuracy by including irrelevant
inputs. After feature extraction, each feature vector is individu-
ally and independently evaluated concerning its significance for
the classification problem, and its importance is quantified as a
𝑝-value. Finally, a vector of all 𝑝-values is assessed based on the
Benjamini-Yekutieli procedure [5] to decide which features to keep.

3.4 Data pre-processing
The features in our dataset vary in scale, range, and units. There-
fore, to ensure that our models do not make assumptions about
the distribution of our data, before training, we first employ a stan-
dardization technique to re-scale our features to have a standard
normal distribution (mean of 0 and standard deviation of 1). Then
we use a min-max normalization technique to re-scale the features
into [0,1].

3.5 Classifiers
We based the choice of classifiers for our analysis on the size and dis-
tribution of features of our dataset. We consider four classifiers that
work well with small, complex datasets and support the nonlinear
distribution of features: Random Forest, Support Vector Machine
(SVM), 𝑘-Nearest Neighbor (𝑘-NN), and Logistic Regression.

Random forest is an ensemble of tree-structured classifiers
such that each tree is trained on the values of a random vector
sampled independently and with the same distribution for all the
trees in the forest. Using a random selection of features to split each
node in a tree decreases the correlation between decision trees in
the forest and thus reduces the possibility of overfitting [8]. It uses a
bootstrapping technique which enables it to work well on relatively
small datasets. In addition, it is simple to implement and robust to
outliers. After training, the classification result is determined by
averaging the most frequent prediction.

Support vector machine (SVM) is a widely used classifier
due to its flexibility and robustness. It is based on maximizing
the gaps between two classes by defining a hyperplane that splits
the two classes [14]. In the case of multi-class classification, SVM
uses a “one-versus-one” classification approach, whereby 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗
((𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1)/2) classifiers are constructed, and each one trains
data from two classes [54]. It is effective in high-dimensional spaces
and can compute decision boundaries without assuming specific
input data distributions. It also performs very well with limited
training data. To adapt SVM for nonlinear classification to avoid
overfitting, we use a Radial Basis Function (RBF) kernel to map the
data into a higher-dimensional space.

𝑘-Nearest Neighbor (𝑘-NN) is one of the simplest classifiers,
often used for its simplicity of interpretation and low computa-
tion time. It hinges on the assumption that similar observations
exist in proximity in a multidimensional space. Therefore, it works
by calculating the distance between observations and assigning
each observation to the class most common among its 𝑘 nearest
neighbors [30]. Besides its simplicity, another advantage is that it is
agnostic to the data distribution. However, its drawbacks are that it
has low efficiency and its performance highly depends on the value
of 𝑘 .

Logistic regression is a widely used classification technique
that uses a logistic function to model a binomial target variable.
However, this technique can also be extended to model a multino-
mial target variable [41]. It is easy to implement, efficient, and is
a high-bias model, which means it works well for small datasets.
However, its major limitation is the assumption of linearity between
the dependent and independent variables.

3.6 Diesel-powered irrigation detection
This section presents our approach to developing and training a
model that detects areas with diesel-powered irrigation activity
using the above list of input features.

3.6.1 Class balancing. Given the imbalanced nature of our dataset
that reflects the ground reality of irrigationmethods used in Ethiopia,
we use a class balancing technique during model training. Datasets
with imbalanced classes cause poor performance with traditional
machine learning models and evaluation metrics that assume a
balanced class distribution. Previous studies have used random
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Figure 6: Single-stage ternary classification approach

under-sampling [62] to address the class imbalance by randomly
removing some observations of the majority classes. However, this
technique is only a good choice when working with a vast dataset,
which is not the case for our study, where each ground data point
is expensive and onerous to collect. Therefore, we use the Syn-
thetic Minority Oversampling Technique (SMOTE) to address the
class imbalance in our dataset [10]. This approach over-samples
the minority classes by creating synthetic instances of the class, se-
lecting a minority class at random, finding its five nearest minority
class neighbors, randomly selecting 𝑘 of the neighbors based on
the amount of oversampling required, and generating a synthetic
example in a randomly selected point between the two examples in
feature space. This technique results in a balanced dataset that aims
to reflect the characteristics of the underlying unbalanced classes.

3.6.2 Cross-validation. Since we have a limited dataset, removing
part of our dataset for validation risks introducing a problem of
under-fitting and bias. We, therefore, use a tenfold cross-validation
approach, which works by dividing the data into ten subsets, and
during each iteration, one of the subsets is used as the validation
set, and the other subsets are combined into a training set, ensuring
that each observation is a validation set once and is a training set
nine times [48]

3.6.3 Hyperparameter tuning. We use a grid search strategy for
different model hyperparameter values during training. We tune
the kernels and C hyperparameters for the SVM classifier, solver
and C hyperparameters for the logistic regression classifier, the
nearest neighbors, metric and weights hyperparameters in the 𝑘-NN
classifier, and the number of estimators and maximum features for
the random forest classifier.

3.6.4 Classification approach. We propose to compare two classi-
fication approaches to detect diesel-powered irrigation. The first
is a single-stage ternary classification approach, categorizing our
specified classes directly. The second is a two-stage binary classi-
fication approach, which seeks to leverage and build on existing
seasoned irrigation detection efforts. In both cases, we train and
cross-validate the classifiers on 70% of the data and reserve the
remaining 30% as a test dataset.

Single-stage ternary classification approach: In this approach
(Figure 6), we use all the labeled observations to train multi-class
classification models to categorize the feature vectors into three
classes directly: diesel irrigated, non-diesel irrigated, and non-irrigated.

Two-stage binary classification approach: This approach
breaks the classification technique into two stages: first, binary clas-
sification of irrigated and non-irrigated pixels. In an ideal case, we
would then use the resulting true positive labels (correctly classified
irrigated pixels) from the first step to train a binary classification

Figure 7: Two-stage binary classification approach

model to categorize the feature vectors into two classes: diesel
irrigated and non-diesel irrigated (Figure 7). However, given the
relatively small sample size in our study, for the first step of our
approach, we validate the irrigation status of the pixels in our sam-
ple with an irrigation detection model [Blinded for review]. This
model pairs Sentinel-2 imagery with labeled plot polygons to train
an irrigation detector that achieves 95% accuracy in our study area.
We then train a binary classification model to categorize the feature
vectors of the irrigated pixels into two classes: diesel irrigated and
non-diesel irrigated.

3.7 Performance Metrics
We evaluate the performance of the classifications based on the
widely-used metrics for classification tasks: precision, recall, F1
score, the Matthews correlation coefficient (MCC), and the area
under the Receiver Operating Characteristic (ROC) curve (AUC)
[56].

4 ANALYSIS
We evaluate the performance achieved by the models in classifying
pixels with diesel irrigation activity using a 10-fold cross-validation
approach. We present results in terms of precision, recall, 𝐹1 score,
and the Matthews correlation coefficient (MCC). We also evaluate
the sensitivity of the classification using the area under the ROC
curve.

4.1 Single-stage ternary classification
This classification approach considers both the pollution and vege-
tation index time series. We extracted 3,156 features from the 𝑁𝑂2,
𝐶𝑂 , NDVI, and EVI time series data. Feature significance testing
and selection based on the Benjamini-Yekutieli procedure results
in 1291 time-series features, 374 selected from EVI, 359 from NDVI,
307 from𝐶𝑂 , and 251 from𝑁𝑂2, resulting in a total of 1295 features,
including elevation, population, distance to a primary water source,
and distance to a major road.

We find that Random Forest achieves the highest 𝐹1 score of
0.77 for the diesel irrigated class, outperforming the other three
classifiers in identifying diesel irrigated pixels, as shown in Table 3.
The logistic regressionmodel performs the worst.We note, however,
that the SVM slightly outperforms the Random Forest model when
we consider the MCC, with a value of 0.76 compared to Random
Forests’ MCC of 0.75. It is noteworthy that the 𝐹1 scores do not
vary significantly from the MCCs, suggesting that the models are
not incorrectly favoring one class over the others.

The confusion matrices presented in Figure8 show where in-
correct classification is occurring. All the classifiers incorrectly

331



e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Lukuyu and Bensch, et al.

Table 3: Comparison of model performance and classification approaches

Single-stage ternary Two-stage binary

Classifier Precision Recall 𝐹1score MCC Precision Recall 𝐹1score MCC
Random Forest 77% 80% 0.77 0.75 86% 92% 0.87 0.70
Logistic regression 64% 76% 0.66 0.67 85% 80% 0.84 0.57
SVM 75% 80% 0.76 0.76 81% 96% 0.84 0.67
𝑘-NN 67% 81% 0.70 0.71 91% 86% 0.90 0.72

Figure 8: Confusion matrices of models in the single-stage
ternary classification approach

classified most diesel irrigated observations as non-irrigated. This
result suggests that the two-stage binary classification approach is
likely to perform better as it separates the classification of irriga-
tion activity and the classification of the type of irrigation method.
It is also noteworthy that the models in this approach are better
at classifying the non-irrigated observations than the other two
classes—the results of the AUC analysis support this finding.

The ROC curve of the Random Forest model is shown in Figure
9. It is plotted using the "One vs. All" methodology, which means
that the ROC for each class is classified against the other two. We
find that the model has the highest ability to separate the non-
irrigated class, with an AUC value of 0.72. The diesel irrigated and
non-irrigated classes have AUC values under 0.7, suggesting that
the model is struggling to distinguish these two classes.

4.2 Two-stage binary classification
We evaluate whether separating the classification task into two
separate binary classification tasks outperforms the direct ternary
classification approach presented in the previous subsection in
identifying diesel irrigated activity. In the irrigation detectionmodel

Figure 9: ROC curve for Random Forest model in a single-
stage ternary classification approach

that we employ in the first step of our classification task, non-
irrigated and irrigated labels are predicted with 98.3% and 95.5%
accuracy [13]. Subsequently, we use the irrigated pixels in our
sample that align with the predictions from the irrigation detection
model as inputs to the second step of the classification task.

Out of 1,578 time-series features extracted from the 𝑁𝑂2 and
𝐶𝑂 time series, the algorithm selected 81 from 𝑁𝑂2 and 105 from
𝐶𝑂 as significant for the classification problem. Therefore, together
with the time constant features, 190 features. Note that we do not
use the vegetation indices time-series in this step, as it is the main
feature used in the irrigation detection model in the first step of
this approach.

Overall, we find that every model in the binary classification
approach outperforms the models in the ternary approach. The
𝑘-NN model outperforms the other three models considering its
𝐹1 score of 0.9, which captures how well the diesel-irrigated class
is predicted, and its MCC of 0.72, which captures how well both
classes are predicted. We can see the balanced performance of the
𝑘-NN in its confusion matrices presented in Figure 10, showing
correct predictions in about 86% of the observations of both classes.

We find that the measure of separability of the models signifi-
cantly improves with the two-stage binary classification approach.
The𝑘-NN model achieves a mean AUC of 0.93 (Figure 11) with
10-fold cross-validation, suggesting a 93% chance that the model
will correctly distinguish a diesel irrigated observation from a non-
diesel irrigated observation.
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Figure 10: Confusion matrices of models in the two-stage
binary classification approach

Figure 11: 10-fold cross-validation ROC curve of diesel irri-
gated class for 𝑘-Nearest Neighbor model in two-stage binary
classification approach. Note: the value of k is 5.

4.3 Feature Contribution
We evaluate which features played a vital role in enabling our
features to distinguish between diesel-irrigated and non-diesel ir-
rigated pixels by comparing two techniques that estimate feature
importance: Random Forest and Gradient Boosting. We find that
both methods commonly identify several time-series features ex-
tracted from𝐶𝑂 , elevation, and proximity to a primary water source
as the key features that contribute to the success of our model, as
shown in Table 4. It is noteworthy that some features from the 𝐶𝑂
pollution time series contribute more to the performance of our
model than features from the 𝑁𝑂2 pollution time series.

Table 4: Top ten features contributing to model performance

Rank Random Forest Gradient Boosting

1 Elevation Non linearity c3 statistic, CO
2 Fourier coefficient, CO Elevation
3 Linear least-squares regression, CO Linear least-squares regression, CO
4 Non linearity c3 statistic, CO Fourier coefficient, CO
5 Partial autocorrelation function, CO Proximity to major water source
6 Proximity to major water source Autocorrelation, CO
7 Autoregressive coefficient, CO Continuous wavelet transform, 𝑁𝑂2
8 Quantile, CO Index mass quantile, 𝑁𝑂2 mean
9 Minimum, CO Variance, CO
10 Fourier coefficient, 𝑁𝑂2 Standard error, CO

Figure 12: Locations of test set pixels by classification

4.4 Spatial Analysis
We also consider the areas where our model was unsuccessful
in classification. We find that the most significant proportion of
incorrectly classified pixels are in areas where the pixels of different
classes are near each other, mainly to the East of Lake Tana in the
Amhara region, as shown in Figure 12 (compared with Figure 2).
One possible reason is that the pollution measurements, which
have been re-gridded at a 250 m resolution, are hard to distinguish
among pixels close together.

To that end, we explore the impact of the spatial placement of
pixels of different classes on the performance of our 𝑘-NN model.
We consider (1) only pixels of the two classes close to each other and
(2) only pixels of the two classes far from each other. We determine
this proximity threshold by considering the distribution of distances
between diesel-irrigated pixels and non-diesel irrigated pixels and
vice versa and categorizing those below the median distance value
as being in proximity. The median distance of diesel-irrigated pixels
from non-diesel irrigated pixels is 714 m, and that of non-diesel
irrigated pixels from diesel-irrigated pixels is 357 m. As shown in
Table 5, our model performs much worse when we only consider
the pixels of two classes close to each other, achieving an MCC of
only 0.23 compared to 0.72 when trained on the full dataset.

On the other hand, we also note that there is better performance
when we only consider the pixels of two classes that are further
than the median distance, achieving an improved MCC score of 0.79.
While our model struggles to separate the diesel and non-diesel
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Table 5: Performance of 𝑘-NN model considering the spatial
proximity of class pixels

Precision Recall 𝐹1 score MCC

Full dataset 91% 86% 0.90 0.72
Class pixels in close proximity 70% 68% 0.70 0.23
Class pixels far from each other 92% 90% 0.92 0.79

Table 6: Bootstrap Matthews correlation coefficient estimates
and confidence intervals for classifiers in the two-stage clas-
sification approach

Classifier Bootstrap Confidence Standard
estimate interval error

Random Forest 0.75 [0.67,0.83] 0.030
Logistic regression 0.56 [0.48,0.64] 0.031
SVM 0.72 [0.64,0.80] 0.031
𝑘-NN 0.74 [0.66,0.82] 0.032

irrigated pixels in areas with multiple pixels of different classes, as
evidenced by the MCC, electrification decisions are usually made
atomically over areas that comprise heterogeneous activities. There-
fore, a good precision and recall score for the diesel-irrigated class
in these areas is sufficient.

4.5 Validation of Results
In our analysis, we use a sample of own-collected primary data
given the absence of comprehensive data for Ethiopia that contains
information on the location and type of water pumps for irrigation.
We acknowledge that the small size of our dataset is challenging
for classification but note the lack of any similar datasets in the
literature. While our dataset is a good representation of the over-
all classification problem, there is a likelihood that it may not be
enough to capture the complexity of the classification problem
on a large scale. In the following, we present two efforts to give
confidence to our results.

4.5.1 Bootstrap Confidence Intervals. We construct confidence in-
tervals around theMatthews correlation coefficient of our models in
the two-stage binary classification approach to evaluate its variabil-
ity. We use a widely used statistical method, the bootstrap method,
which randomly draws samples from the original dataset (with
replacement) to obtain estimates of the MCC, thus creating a distri-
bution. We generate a 99% confidence interval of coefficient values
from 1000 bootstrap samples for the models in the two-stage bi-
nary classification approach. We find a 99% chance that the interval
[0.66, 0.82] contains the MCC of our best performing model, the
𝑘-NN, and the MCC of the poorest performing model, the logistic
regression, is included in the [0.48,0.64] interval with high certainty.

4.5.2 Permutation testing. Permutation testing helps to investigate
whether or not the performance score obtained from the models
is by chance. The algorithm generates a null distribution of the
performance score of the classifier on 1000 different permutations
of the dataset, where features remain the same but labels undergo

Figure 13: Distribution of average weighted 𝐹1 scores from
permutation test of 𝑘-NN model in two-stage classification
approach.

various permutations [50]. We performed permutation testing on
the 𝐹1 score of the two-stage classification𝑘-NNmodel.We find that
the weighted average 𝐹1 score obtained on the original data, 0.86,
is statistically significantly higher than the scores obtained using
the permutated data, as shown in Figure 13. This result indicates
that our dataset contains actual dependency between features and
labels, which our model was able to use to identify the observations
of the diesel irrigated class.

When we apply our 𝑘-NN model to the predicted irrigated areas
of the Amhara region [13], it classifies about 20% of the irrigation
activity as using diesel-powered pumps. As shown in Figure 14, a
significant proportion of the diesel-powered irrigation activity is
in the region’s western part.

5 DISCUSSION AND FUTUREWORK
Our model’s high precision and recall suggest that our approach
could be valuable in identifying areas with potential anchor loads
for grid extension by replacing existing diesel pumps for irrigation
with electric pumps in Ethiopia. Grid extension planning has myr-
iad considerations, including the locations of populations without
electricity, unelectrified productive use loads including mining and
industry, proximity to the existing grid, and political considerations.
However, information on where diesel-powered irrigation already
is represents sites more likely to have stable revenue from electricity
sales. This information can be of significant value to grid extension
planning in settings like Ethiopia, where irrigation is central to the
electrification strategy and little other economic activity exists in
rural areas [45]. While capturing the relative importance of each
consideration is difficult enough in planning grids, it becomes even
more challenging in integrated electrification planning scenarios
that also consider decentralized electrification via mini-grids and
solar home systems.

Nonetheless, as a simple thought experiment to show the value of
accurate predictions of diesel-powered irrigation areas, imagine that
two grid planners each have enough budget to extend an existing
grid to 100 additional sites. Each of them gains another site for every
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Figure 14: Predictions of diesel-powered irrigation activity
in the Amhara region of Ethiopia.

two electrified diesel-powered irrigation sites (since these sites
return more consistent revenues). Both planners have perfect maps
of all irrigation sites in the country. Still, one has no information
about diesel-powered irrigation sites, and the other can interrogate
any location and receive a correct answer 75% of the time (similar
to our algorithm’s performance).

Given that only 20% of irrigation sites are diesel-powered, our
second planner is nearly four times more likely to correctly select
areas with diesel-powered irrigation. Consequently, the first grid
planner uses their capital budget to electrify 112 sites, while our
second planner can electrify 250 total sites (2.2x).While this exercise
is highly simplified and any assumptions may be discounted, it aims
to convey the enormous value to electricity planners in improving
insight into which areas may yield higher stable revenues.

Future directions will consider the equity implications of this
work by investigating the prioritization of electrification in more
affluent areas where consumers can already afford diesel pumps.
Second, we have yet to consider this technique’s applicability in
built environments that could have confounding pollution activity.
Third, having a limited sample size makes it difficult to generalize
our findings. However, collecting a larger ground truth sample is
highly resource-intensive and logistically challenging. Therefore,
there could be an opportunity to create hand-labeled ground truth
data from satellite data to train novel and transferable deep learning
models.

6 CONCLUSION
While universal electrification is beginning to come into view in
Sub-Saharan Africa, the attendant livelihood gains fromwidespread
adoption of electricity for economic benefits remain stubbornly far.
Financially sustainable electricity service providers are crucial to an
electrified economy, and identifying potential sources of sustainable

revenue for utilities that provide financial benefits to customers
is a central challenge. This work presents a novel technique that
leverages a raft of remote sensing datasets – including pollution,
vegetation, and population as derived from satellites – to iden-
tify whether irrigation sites in Ethiopia are powered by diesel or
non-diesel sources. We evaluate our technique via a unique house-
hold survey among farmers in two regions of Ethiopia that we
collected. Our results show a more than 3.5x improvement over the
random chance threshold for this problem (20% to ≈75%) that can
enable enhanced business models for electricity service providers,
environmentally-sustainable production for farmers, and acceler-
ated electrification for the people of Ethiopia. The broad application
of this technique can substantially aid in the successful expansion of
electricity systems throughout agriculture-led developing regions.
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